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Abstract. By using realistic models for elastic hadron scattering, we demonstrate that at present acceler-
ator energies the s-channel unitarity bound is safe, not to be reached before 105 GeV, while the black disc
limit is saturated around 6 TeV. By increasing the energy, a larger transparency of the scattered particles
near the center, surrounded by a black ring, is expected. Unitarity effects are incorporated and their effects
are studied both in a phenomenological and formal, analytical way.

1 Introduction

Our decision to write this paper was motivated partly by
recent claims that in high-energy hadron scattering the
black disc limit has been reached and the violation of the
s-channel unitarity in some models is just around the cor-
ner. While the first statement is true and has interesting
physical consequences, the second one is wrong for any
realistic model fitting the existing data on proton and an-
tiproton scattering up to the highest accelerator energies.

To start with, let us recall the general definitions and
notations. Unitarity in the impact parameter (b) represen-
tation reads

=mh(s, b) =
∣∣h(s, b)

∣∣2 + Gin(s, b), (1)

where h(s, b) is the elastic scattering amplitude at
√

s cen-
ter of mass energy (with =mh(s, b) usually called the pro-
file function, representing the hadron opacity) and
Gin(s, b), called the inelastic overlap function, is the sum
over all inelastic channel contributions. Integrated over b,
(1) reduces to a simple relation between the total, elastic
and inelastic cross sections σtot(s) = σel(s) + σin(s).

Equation (1) imposes an absolute limit

0 ≤ ∣∣h(s, b)
∣∣2 ≤ =mh(s, b) ≤ 1, (2)

while the so-called “black disc” limit σel(s) = σin(s) =
1
2σtot(s) or

=mh(s, b) = 1/2 (3)

is a particular realization of the optical model, namely it
corresponds to the maximal absorption within the eikonal
unitarization, when the scattering amplitude is approxi-
mated as

h(s, b) =
i

2
(
1 − exp [iω(s,b)]

)
, (4)

with a purely imaginary eikonal ω(s, b) = iΩ(s, b).
Eikonal unitarization corresponds to a particular solu-

tion of the unitarity equation

h(s, b) =
1
2

[
1 ±

√
1 − 4Gin(s, b)

]
, (5)

the one with minus sign.
The alternative solution, that with plus sign is known

[1,2] and realized within the so-called U -matrix1 approach
[3,4] where the unitarized amplitude is

h(s, b) =
U(s, b)

1 − i U(s, b)
, (6)

where now U is the input Born term, the analogue of the
eikonal ω in (4).

In the U -matrix approach, the scattering amplitude
h(s, b) may exceed the black disc limit as the energy in-
creases. The transition from a (central) “black disc” to a
(peripheral) “black ring”, surrounding a gray disc, for the
inelastic overlap function in the impact parameter space
corresponds to the transition from shadowing to antishad-
owing [1]. We shall present a particular realization of this
regime.

The impact parameter amplitude may be calculated
either directly from the data, as it was done e.g. in [5,
6] (where, however, the real part of the amplitude was
neglected) or by using a particular model that fits the data
sufficiently well. There are several models appropriate for
this purpose. In the classical paper [7] on this subject,
from the behavior of Gin(s, b), the proton is characterized
as getting “BEL” (Blacker, Edgier and Larger). Below we

1 We follow traditional terminology, although the word “ma-
trix” in this context is misleading, since U , similar to the
eikonal, is a single function rather than a matrix
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show that the proton, after having reached its maximal
darkness around 6 TeV, may get less opaque beyond.

Actually, the construction of any scattering amplitude
rests on two premises: the choice of the input, or Born
term and the relevant unitarization procedure (eikonal or
U -matrix in our case). Within the present accelerator en-
ergy region there are several models that fit the data rea-
sonably well. Compatible within the region of the present
experiments, they differ significantly when extrapolated
to higher energies. We shall consider two representative
examples, namely the Donnachie-Landshoff (D-L) model
[8,9] and the dipole Pomeron (DP) model [4,10])

In Sect. 2 we present the necessary details about the
two realistic models (D-L and DP), then, focusing on the
DP model, we investigate in Sect. 3 the unitarity proper-
ties at the Born level and in Sect. 4 we study the optical
properties (transparency) after unitarization; a compara-
ison with the D-L model is given in the Appendix.

2 The Born term

The Donnachie-Landshoff (D-L) model [8] is popular for
its simplicity. Essentially, it means the following four-para-
meter empirical fit to all total hadronic cross sections

σtot = X sδ + Y sδr , (7)

where two of the parameters, namely δ (≈ 0.08) and
δr(< 0) are universal. While the violation of the Froissart-
Martin (F-M) bound,

σtot(s) < C (ln s)2 C = 60 mb (8)

inherent in that model, is rather an aesthetic than a prac-
tical defect (because of the remoteness of the energy where
eventually it will overshoot the F-M limit), other deficien-
cies of the D-L model (or any other model based on a
supercritical Pomeron) are sometimes criticized in the lit-
erature, but so far nobody was able to suggest anything
significantly better instead. A particular attractive feature
of the D-L Pomeron, made of a single term, is its factoriz-
ability, although this may be too crude an approximation
to reality.

The t dependence in the Donnachie-Landshoff model is
usually chosen [9] in the form close to the dipole formfac-
tor. For the present purposes a simple exponential residue
in the Pomeron amplitude will do as well, with the signa-
ture included

A(s, t) = − N

(
−i

s

sdl

)α(t)

eBt , (9)

where α(t) = α(0) + α′ t is the Pomeron trajectory and
N is a dimensionless normalization factor related to the
total cross section at s = sdl by the optical theorem

N =
sdl

4π sin π
2 α(0)

σtot(s = sdl) . (10)

According to the original fits [8,9]: sdl = 1 GeV2, α(0) =
1.08, α′ = 0.25 GeV−2, and X = 21.70 mb (see (7)) re-
sulting in N = X

4π sin πα(0)/2 = 4.44. By identifying

dσ(s, t)
dt

=
dσ(s, t = 0)

dt
eBexp(s) t (11)

and choosing the CDF or E410 result for the slope Bexp at
the Tevatron energy, we obtain B = 1

2Bexp(s)−α′ ln s
sdl

=
4.75 GeV−2.

In the dipole Pomeron (DP) model [4], factorizable at
asymptotically high energies, logarithmically rising cross
sections are produced at a unit Pomeron intercept alone
and thus DP does not conflict with the F-M bound. While
data on total cross section are compatible with a loga-
rithmic rise (DP with unit intercept) the ratio σel/σtot is
found (see [11] for details) for δ = 0 to be a monotonically
decreasing function of the energy for any physical value of
the parameters. The experimentally observed rise of this
ratio can be achieved only for δ > 0 and thus it requires
the introduction of a “supercritical” Pomeron, α(0) > 1.
As a result, the rise of the total cross sections is driven and
shared by the dipole and the “supercritical” intercept. The
parameter δ = α(0)−1 in the DP model is nearly half that
of the D-L model, making it safer from the point of view
of the unitarity bounds. Generally speaking, the closer the
input to the unitarized output, the better the convergence
of the unitarization procedure.

Let us remind that, apart from the conservative F-M
bound, any model should satisfy also s-channel unitarity.
We demonstrate below that both the D-L and DP model
are well below this limit and will remain so within the
forseable future. (Let us remind that the D-L and the DP
model are close numerically, although they are different
conceptually and consequently they extrapolations to su-
perhigh energies will differ as well.)

The elastic scattering amplitude corresponding to the
exchange of a dipole Pomeron reads

A(s, t) =
d

dα

[
e−iπα/2G(α)(s/s0)α

]
= e−iπα/2(s/s0)α

[
G′(α) + (L − iπ/2)G(α)

]
, (12)

where L ≡ ln
s

s0
, α ≡ α(t) is the Pomeron trajectory; in

this paper, for simplicity we use a linear trajectory α(t) =
α(0) + α′t.

By identifying G′(α) = −aebp(α−1), (12) can be rewrit-
ten in the following geometrical form

A(s, t) = i
as

bps0

[
r2
1(s) er2

1(s)[α(t)−1]

−ε r2
2(s) er2

2(s)[α(t)−1]
]

, (13)

where

r2
1(s) = bp + L − i

π

2
; r2

2(s) = L − i
π

2
. (14)

The model contains the following adjustable parameters:
a, bp, α(0), α′, ε and s0.
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Table 1. Parameters of the dipole Pomeron found in [10],
where the Odderon and two secondary Reggeons ω and f were
also included

a bp α(0) α′(GeV−2) ε s0(GeV2)

355.6 10.76 1.0356 0.377 0.0109 100.0

In Table 1 we quote the numerical values of the param-
eters of the dipole Pomeron fitted in [10] to the data on
proton-proton and proton-antiproton elastic scattering:

σtot(s) =
4π

s
=mA(s, 0) , ρ(s) =

<eA(s, 0)
=mA(s, 0)

;

4 ≤ √
s(GeV) ≤ 1800 (15)

as well as the differential cross section

dσ(s, t)
dt

=
π

s2 |A(s, t)|2 ; 23.5 ≤ √
s(GeV) ≤ 630 ;

0 ≤ |t|(GeV2) ≤ 6 . (16)

In that fit [10], apart from the Pomeron, the Odderon and
two subleading trajectories ω and f were also included.
Here, for simplicity and clarity we consider only the dom-
inant term at high energy due to the Pomeron exchange
with the parameters fitted in [10]. The extent to which
this Pomeron is a good approximation in the TeV region
is discussed in details in [12]. The quality of this fit is il-
lustrated and discussed in [10]. With such a simple model
and small number of parameters, better fits are hardly to
be expected.

We use the above set of parameters to calculate the
impact parameter amplitude, and to scrutinize in Sect. 3
the unitarity properties of this Born level amplitude. In
Sect. 4 we introduce a unitarization procedure, necessary
at higher energies and discuss the relevant physical con-
sequences.

To summarize, the DP model with a unit intercept is
selfconsistent in the sense that its functional (logarithmic)
form is stable with respect to unitarization. Moreover, the
presence of the second term, proportional to ε in (13) has
the meaning of absorptions and it is essential for the dip
mechanism. It can be viewed also as one more unitarity
feature of the model.
In the limit of very high energies, when L � bp the two
(squared) radii R2

i = α′r2
i become equal and real and the

model obeys exact geometrical scaling as well as factor-
ization (see next section). Alternatively, it corresponds to
the case of no absorptions (ε = 0).
However attractive, the case of a unit intercept (δ = 0) is
only an approximation to the more realistic model, requir-
ing δ > 0 to meet the observed rise of the ratio σel/σtot.
For such a “supercritical” Pomeron unitarization becomes
inevitable.

Fig. 1. Calculated Born level =mh(s, b) and Gin(s, b) plotted
versus the modulus of the impact parameter b for some charac-
teristic energies

√
s as indicated (the highest and largest plots

are for the largest energy, the solid curve is for the LHC en-
ergy). The top of the scale on the left is the unitarity limit
and the value 1/2 corresponds to the black disc limit. The cal-
culations are performed for the dipole Pomeron model of [10];
similar results are obtained for the D-L model (see the text)

3 Impact parameter representation,
the black disc limit and unitarity

The elastic amplitude in the impact parameter represen-
tation in our normalization is at the Born level

h(s, b) =
1
2s

∫ ∞

0
dq qJ0(bq)A(s,−q2) , q =

√−t .

(17)
The impact parameter representation for linear trajecto-
ries2 is calculable explicitly for the DP model (13)

h(s, b) = i g0
[
er2

1δ e−b2/4R2
1 − ε er2

2δ e−b2/4R2
2
]

, (18)

where

R2
i = α′r2

i (i = 1, 2) ; g0 =
a

4bpα′s0
. (19)

Asymptotically (i.e. when L � bp, i.e.
√

s � 2. TeV, with
the parameters of Table 1),

h(s, b) −→
s→∞ i g(s) (1 − ε) e− b2

4R2 , (20)

where

R2 = α′L ; g(s) = g0

(
s

s0

)δ

. (21)

To illustrate the s-channel unitarity, we display in Fig. 1
a family of curves showing the imaginary part of the am-
plitude in the impact parameter-representation at various
energies; also shown is the calculated (from (1)) inelastic
overlap function.

Our confidence in the extrapolation of =mh(s, b) to
the highest energies rests partly on the good agreement of
our (non fitted) results with the experimental analysis of
the central opacity of the nucleon (see Table 2).

2 Other cases were treated e.g. in [4]
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Table 2. Central opacity of the nucleon =mh(s, 0) calculated
with the model [10] at ISR, SPS, Tevatron energies compared
with experiment

√
s 53 GeV 546 GeV 1800 GeV

exp 0.36 [6] 0.420 ± 0.004 [13] 0.492 ± 0.008 [14]
th 0.36 0.424 0.461

It is important to note that the unitarity bound 1 for
=mh(s, b) will not be reached at the LHC energy, while the
black disc limit 1/2 will be slightly exceeded, the central
opacity of the nucleon being =mh(s, 0) = 0.54.
The black disc limit is reached at

√
s ∼ 6 TeV, where

the overlap function reaches its maximum 1
4 . This energy

corresponds to the appearance of the antishadow mode in
agreement with the general considerations in [1]. Notice
that while =mh(s, b) remains central all the way, Gin(s, b)
is getting more peripheral as the energy increases starting
from the Tevatron. For example, at

√
s = 14 TeV, the

central region of the antishadowing mode below b ∼ 0.4
fm is discernible from the peripheral region of shadowing
mode beyond b ∼ 0.4 fm, where Gin(s, b) = 1

4 . In terms
of [7], the proton will tend to become more transparent
(gray) at the center, surrounded by a black ring, i.e. it is
expected to become “GEL” instead of “BEL”.

The s channel unitarity limit will not be endangered
until extremely high energies (105 for the D-L model and
106 GeV for the DP), which is secure for any credible
experiment. It is interesting to compare these limit with
the limitations imposed by the Froissart-Martin bound:
actually the Pomeron amplitude saturates the F-M bound
at 1027 GeV. As expected, the F-M bound is even more
conservative than that following from s-channel unitarity.

The D-L and DP models are confronted in the Ap-
pendix.

4 Unitarization

4.1 Generalities

Now, we consider the unitarized amplitude which, accord-
ing to the “U -matrix” prescription [3,4] and in the impact
parameter representation, writes

H(s, b) =
h(s, b)

1 − ih(s, b)
, (22)

with the Born term h(s, b) defined in the previous section
in (13)-(14).

We study at various energies the behavior of this am-
plitude H(s, b) and of the corresponding inelastic overlap
function

G̃in(s, b) = =mH(s, b) − |H(s, b)|2 . (23)

By comparing it with the similar results obtained at the
Born level, we found that unitarization lowers significantly

Fig. 2. Same as in Fig. 1, for the unitarized amplitude H(s, b)
and the overlap function G̃in(s, b), calculated without refitting
the parameters used in [10] at the Born level

both the elastic and inelastic impact parameter ampli-
tudes, at least if the parameters are kept the same (com-
pare Figs. 1–2).

An unescapable consequence of the unitarization is
that, when calculating the observables, one should also
replace the Born amplitude A(s, t) by a unitarized am-
plitude Ã(s, t) defined as the inverse Fourier-Bessel trans-
form of H(s, b)

Ã(s, t) = 2s

∫ ∞

0
db bJ0(b

√−t)H(s, b) . (24)

Thus, the above picture may change since the parame-
ters of the model should in principle be refitted under the
unitarization procedure (this effect of changing the pa-
rameters was clearly demonstrated e.g. in [15]).

Actually, searching for a new fit of the parameters us-
ing an “exact” unitarization procedure is time consum-
ing and unnecessary for the present discussion because
the behavior of the amplitude and of the overlap func-
tion in the impact parameter representation obtained at
the Born level will be almost restored after unitarization.
We checked that the parameters of the complete model
(with the secondary Reggeons and Odderon added in the
fit) after unitarization may be rearranged so as to repro-
duce well the data and give roughly the same extrapolated
properties as at the Born level. While the unitarity limit
now is secured automatically (remind that =mh(s, 0) is
well below that limit even at the Born level in the TeV re-
gion) the behavior of the elastic impact parameter ampli-
tude after it has reached the black disc limit corresponds
(see [1]) to the transition from shadowing to antishadow-
ing. In other words, the proton (antiproton) after having
reached its maximal blackness around 6 TeV, will become
progressivly more transparent with increasing energies at
its center (becoming a gray disc surrounded by a black
ring).

4.2 Analytic method of unitarization

Above we presented calculations based on two models:
a “selfconsistent” DP ansatz fitted to the data at the
Born level and the same model with eikonalization. As
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expected, unitarity (eikonalization) modifies (lowers) the
impact parameter amplitude significantly. Actually, after
the unitarization process, as already stressed, the parame-
ters should be refitted and, as demonstrated in [15] for the
total cross sections, they are expected to change quite a
lot. Since relevant (i.e. with unitarization involved) fits to
the differential cross sections are technically complicated,
below we present a simple and elegant (analytic) approach
to this problem.

Let us write the Born amplitude in the following Pomeron
geometrical form (for simplicity, below we neglect the real
part), intended for energies ln(s/s0) � π/2,

h(s, b) ' ig̃(s)e
− b2

4R2 , (25)

with

R2 = α′ ln(
s

s0
) ; g̃(s) = g̃0

(
s

s0

)δ

. (26)

This corresponds to a dipole Pomeron, taken alone, with
a single exponential in the DP model of the previous sec-
tions, but without absorptions, ε = 0, now supposed to be
generated by unitarity, the “running coupling” g̃(s) being
as before and α(0) = 1 + δ. This approximation to the
DP is justified at very high energies, when ln(s/s0) � bp

and the two radii and exponentials become equal and real;
accordingly g̃(s) is renormalized by absorbing ε (see (20-
21)). In the U−matrix approach, the unitarized impact
parameter amplitude is defined by (22), while the inelas-
tic overlap function is by (23). It is quite easy to evalu-
ate the dynamics of the hadron opacity =mH(s, b) and
of G̃in(s, b), i.e. their s and b dependence, providing we
have estimated the relevant parameters to be used after
unitarization.

By accepting this “asymptotic” approximation, we
have assumed ln(s/s0) � bp and π/2. The last condi-
tion constrains s0 and bp as shown in Table 1, in order to
give a more acceptable lower energy limit (by increasing
the domain of the present approximation). For example,
we may choose the traditional “scale” parameter s0 = 1
GeV2. To evaluate the crucial parameter δ, we used the
ratio of the cross sections σel/σtot, as calculated in [11] in
the U -matrix approach with rescattering corrections in-

cluded up to
(

1/ ln(s/s0)
)

σel

σtot
' 1 − g̃(s)

(1 + g̃(s)) ln(1 + g̃(s))
, (27)

where g̃(s) is defined by (26). The only variable g̃(s) ap-
pearing in this equation can be determined from the ex-
perimental data on the ratio σel/σtot. To minimize the
subleading contributions, we choose the two highest en-
ergy points at 546 GeV and at 1.8 TeV. By solving (27)
numerically we find for each of the experimental values
the corresponding values of g̃(s) (see Table 3).

Note that, when using the same hypothesis as in (25)

h(s, b) ' igB(s)e− b2

4R2 , (28)

Table 3. Values of the function g̃(s) entering the asymptotic
impact parameter amplitude, estimated for the two highest
energies from experiments [16] concerning σel/σtot

UA4 CDF E710 CDF
√

s (GeV) 546 546 1800 1800
σel/σtot .215 ± .005 .210 ± .002 .230 ± .012 .246 ± .004

g̃(s) .658 ± 0.023 .635 ± .009 .730 ± .060 .811 ± .021

Table 4. Parameters of the approximate Born Dipole Pomeron
amplitude in the b representation yielding an analytical treat-
ment of the unitarization

g̃0 α(0) α′(GeV−2) s0(GeV2)

0.175 1.102 0.25 1.0

we find at the Born level, instead of (27),(
σel

σtot

)
Born

' =mh(s, 0)
2

=
gB(s)

2
. (29)

This means that the Born coupling gB(s) is renormalized
(increased) by the unitarization process since it is clear
from Table 3 that g̃(s) > gB(s).
By using the ratio of two g̃’s, taken at two different ener-
gies

g̃(s2)
g̃(s1)

=
(s2

s1

)δ

the parameter δ can be determined from δ = ln
(
g(s2)/

g(s1)
)
/ ln(s2/s1) at least in theory. By using the experi-

mental values of g̃(s) quoted above we find a large discrep-
ancy due the large errors. If we rely on the most precise
data (CDF [13,14]) we find δ = 0.102 ± 0.040, seemingly
high, compared with our Born value. However such a crude
estimate (even when choosing the central value) is in a sur-
prisingly good agreement with most recent determinations
of the Pomeron intercept and exhibits the increase due to
the unitarization process investigated in [15]. Notice that
the less precise pair of data (UA4, E710) does not allow
to determine δ with a credible precision: δ = 0.043±0.120
with that pair of data and 0.058, 0.087 when chosing the
other possibilities. By choosing s0 = 1 GeV2 for the reason
explained above, and for δ = 0.102, the definition of g̃(s)
gives a norm g̃0 = 0.174 ± 0.002 for both the CDF values
obtained at 546 and 1800 GeV (again, for consistency we
do not take into account the less precise determinations of
g(s)). The remaining parameter α′ necessary in the eval-
uation of the radius R will be chosen for simplicity equal
to its world average value 0.25 GeV2. These parameters
are collected in Table 4.

With these numbers in hand, it is now straightfor-
ward to calculate =mH(s, b) and G̃in(s, b). The results
are shown in Fig. 3.

They appear to be similar to those exhibited in Fig. 1
except for the lowest energies (say at ISR, where our high-
energy approximation is not valid any more). Thus, as far
as the TeV region is concerned, the modifications of Fig. 1
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Fig. 3. Same as in Figs. 1–2, for the unitarized amplitude
H(s, b) and the overlap function G̃in(s, b), calculated in the
simple asymptotic analytical approximation of the Pomeron,
with a specific determination of the parameters

are in practice negligible, when using the above simpli-
fied unitarization. It confirms our statement above, that
little changes with respect to the Born level are to be ex-
pected after unitarization, provided if the original param-
eters are refitted. The above approximate analytic unita-
rization with the “integral” fit to the ratio of the cross
sections, is more economic than refitting the parameters
by using the whole machinery of exact eikonalization of
the full amplitude. Furhermore, it appears that our super-
critical DP model at the Born level ((12) or (13)) mimics
the situation when rescattering corrections are taken into
account, and no problems are expected with the violation
of unitarity.

In other words, while in the “self-consistent” DP
ansatz absorptions (unitarity) effect, giving rise e.g. to the
dip-bump structure are built in right from the beginning,
here the Born term is simpler since absorptions are sup-
posed to be generated by unitarization. Although these
two models, have some common features, they are not
identical (even if we neglect the Odderon and Reggeons).
Notice that the (close) black disc- and (remote) unitarity
limits both concern the delicate central (near b = 0) re-
gion where the s− channel unitarity effects are important.
Various approaches to s-channel unitarity may clarify the
optical and geometrical properties (“transparency”) of the
colliding hadrons as well as the efficiency of the existing
unitarization procedures.

5 Conclusions

While the results of our analyzis in the impact parame-
ter representation are in agreement with the earlier obser-
vations that =mh(s, b) remains central and Gin(s, b) be-
comes peripheral as the energy exceeds several TeV (see
Fig. 1). There is a substantial difference with the known
“BEL-picture” [7], according to which with increasing en-
ergy the proton becomes Blacker, Edgier and Larger.

We confirm that getting edgier and larger, the proton,
after reaching its maximal blackness, will tend to be more
transparent or “GEL” (a gray disc surrounded by a black
ring) when the energy exceeds that of the Tevatron. This

Table 5. Maximum values of the amplitude and overlap func-
tion at the Born level and after U -matrix unitarization calcu-
lated at 14 TeV for the DP and D-L models without refitting
the parameters

=mh(s, 0) Gin(s, 0) =mH(s, 0) G̃in(s, 0)

DP 0.535 0.247 0.349 0.227
D-L 0.539 0.246 0.351 0.227

transition from shadowing to new antishadowing scatter-
ing mode is expected to occur at the LHC.

To conclude, we stress once more that both the data
and relevant models at present energies are well below the
s-channel unitarity limit. In our opinion, deviations due to
the diversity of realistic models may result in discrepancies
concerning =mh(s, 0) at the level of at most 10%, while
its value at 6 TeV is still half that of the unitarity limit,
so there is no reason to worry about it! Therefore, model
amplitudes at the Born level may still be quite interesting
and efficient in analyzing the data at present accelerator
energies and giving some predictions beyond. The ques-
tion, which model is closer to reality and meets better
the requirements of the “fundamental theory” remains of
course topical.

Extrapolations and predictions to the energies of the
future accelerators (see e.g. [12]) are both useful and ex-
citing since they will be checked in the not-so-far future
at LHC and other machines. The fate of the “black disc
limit” is one among these.

Acknowledgements. We thank S.M. Troshin for a useful corre-
spondence.

Appendix: comparaison
between the DP and D-L models

The D-L amplitude in the impact parameter representa-
tion at the Born level, calculated from (9) and (17) is

h(s, b) = −N

2s

(
−i

s

sdl

)α(0)
e

−b2

4B′(s)

2B′(s)
,

B′(s) = B + α′
(

ln
s

sdl
− i

π

2

)
.

As already noted, the s channel unitarity limit both for
the DP and the D-L model will not be endangered until
extremely high energies (105 GeV for the DP and 106

GeV for the DP model, the order-of-magnitude differences
coming from the smaller intercept in the DP model), while
the F-M bound is saturated at 1027 GeV (for more details
see [17]).

Table 5 presents a selection of results concerning the
DP and D-L models for the Pomeron in the impact param-
eter representation of the elastic amplitude and inelastic
overlap function, calculated at b = 0 at the LHC energy.
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We conclude that the two models give similar results;
all relevant conclusions on unitarity and black disc limits
for DP model hold for D-L model as well (the curves in
Figs. 1,2 would be indistinguishible by eye).

Note that both models are supercritical, with asymp-
totic sδ type behavior of the total cross sections. They
are known to give fits which cannot be discriminated by
present data from an asymptotic ln2 s type behavior. This
is another argument to neglect in that case unitarization
effects.
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